Garfield School Calculation Policy

- Garfield School follows the White Rose Maths scheme.
- This policy mostly uses strategies taken from the White Rose Maths Scheme although a few areas have been altered in line with previous good practice taught at Garfield.
- This calculation policy follows the CPA learning approach (Concrete, Pictorial and Abstract).
- Concrete means to use physical objects to solve maths problems.
- Pictorial is to use drawings or picture representations.
- Abstract is to solve maths problems using only numbers.
- In KS1 the majority of calculations taught involve concrete methods and children gradually become more familiar with pictorial and some simple abstract representations.
- The methods outlined for the earlier years in KS2 (years 3 and 4) are more pictorial, i.e., they break down the calculations so that the children understand how they are manipulating the numbers to calculate the answer. Children gradually learn how to relate these pictorial representations to more abstract calculations.
- The children move on to more formal abstract calculations in years 5 and 6.
- In Year 2, pupils are taught the 2, 5 and 10 times tables. In Year 3, the 3, 4 and 8 times tables are introduced and by the end of Year 4, pupils are expected to know all of the times tables up to 12 by 12. At the end of Year 4, pupils have to take part in a National Multiplication Check.

Calculation Guidance: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

	Objective	Concrete	Pictorial	Abstract
$\stackrel{-1}{5}$		Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar. \square 3	$\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$ Use the part-part-whole diagram as shown above to move into the abstract.
		 Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Use a number line to count on in ones. A bar model which encourages the children to count on, rather than count all.	$5+3=8$ The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$

Calculation Guidance: Addition

	Objective	Concrete	Pictorial	Abstract
		$6+5=11$ Start with the bigger number and use the smaller number to make 10.	$\begin{aligned} & 6+4=10 \\ & 10+1=11 \end{aligned}$	$6+5=11$ Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
$\begin{aligned} & \text { N } \\ & \stackrel{y}{む} \\ & \end{aligned}$		$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10 .	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Calculation Guidance: Addition

	Objective	Concrete	Pictorial	Abstract
		Add together the ones first, then add the tens. Use the Base 10 blocks first before moving onto place value counters. $24+15=$ $44+15=$	After physically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	$\begin{array}{r} 24+15=39 \\ 24 \\ +15 \\ \hline 39 \end{array}$
$$		Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten.	Using place value counters, children can draw the counters to help them to solve additions.	$\begin{aligned} & 40+9 \\ & \frac{20+3}{60+12}=72 \end{aligned}$

Calculation Guidance: Addition

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \stackrel{\rightharpoonup}{m} \\ & \stackrel{y}{\pi} \\ & \underset{\sim}{\sim} \end{aligned}$		Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten. As children move on to decimals, money and decimal place value counters can be used to support learning. NB By Year 4 children will progress on to adding four digit numbers.	100s Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. NB Addition of money needs to have f and p added separately.	$\begin{aligned} & 100+40+6 \\ & 500+20+7 \\ & 600+70+3=673 \end{aligned}$ As the children progress, they will move from the expanded to the compacted method. $\begin{array}{r} 146 \\ +\quad 527 \\ \hline 673 \end{array}$ 1 As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.
$\stackrel{0}{\text { W }}$ $\stackrel{6}{\#}$ $\stackrel{\sim}{\sim}$		Consolidate understanding using numbers with more than 4 digits and extend by adding numbers with up to 3 decimal place		

Calculation Guidance: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & -1 \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		Use physical objects, counters, cubes etc. to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	$4-2=2$
		Counting back (using number lines or number tracks) children start with 6 and count back 2. $6-2=4$	Count back on a number line or number track Start at the bigger number and count back the smaller number, showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.
		Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.	Count on to find the difference. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw bars to find the difference between 2 numbers.	Hannah has 8 goldfish. Helen has 3 goldfish. Find the difference between the number of goldfish the girls have.

Calculation Guidance: Subtraction

	Objective	Concrete	Pictorial	Abstract
$$		$75-42=33$ Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	 Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

Calculation Guidance: Subtraction

Calculation Guidance: Subtraction

	Objective	Concrete	Pictorial	Abstract
	Now look at the tens, can I take away 8 tens easily? I need to exchange 1 hundred for 10 tens.		Calculations	

Calculation Guidance: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups, repeated addition.

	Objective	Concrete	Pictorial	Abstract
			There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there?	Write addition sentences to describe objects and pictures. $\sum_{2+2+2=6}^{215}$
$\begin{aligned} & N \\ & \underset{N}{7} \\ & \underset{\sim}{\approx} \end{aligned}$		Create arrays using counters/cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{gathered} \\ 5+5+5=15 \\ 3+3+3+3+3=15 \\ 5 \times 3=15 \\ 3 \times 5=15 \end{gathered}$

Calculation Guidance: Multiplication

Calculation Guidance: Multiplication

	Objective	Concrete	Pictorial	Abstract
		Show the link with arrays to first introduce the expanded method.		Start with long multiplication, reminding the children about lining up their numbers clearly in columns. $\begin{array}{r} 18 \\ \times \frac{13}{24}(3 \times 8) \\ 30(3 \times 10)) \\ 80(10 \times 8) \\ \frac{100}{234}(10 \times 10) \end{array}$
$\begin{aligned} & \stackrel{0}{\omega} \\ & \stackrel{n}{\approx} \\ & \underset{\sim}{\sim} \end{aligned}$		Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. This moves to the more compact method. $\begin{array}{r} 1342 \\ \times \quad 18 \\ 13420 \\ 10736 \\ \hline 24156 \end{array}$

Calculation Guidance: Division

Key language: share, group, divide, divided by, half, repeated subtraction, equal groups, remainder.

	Objective	Concrete	Pictorial	Abstract
	$\begin{aligned} & \stackrel{\infty}{c} \\ & \stackrel{C}{C} \\ & \frac{0}{5} \end{aligned}$	I have 6 cubes, can you share them equally between two people?	Represent the sharing pictorially.	$6 \div 2=3$3 3 Children should also be encouraged to use their 2 times tables facts.
$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	0 0 0 0 0	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 10 \div 5=? \\ & 5 \times ?=10 \end{aligned}$	$10 \div 5=2$ Divide 10 into 5 groups. How many are in each group?

Calculation Guidance: Division

	Objective	Concrete	Pictorial	Abstract
		Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{\|lr} \text { Eg } \begin{array}{rr} 15+3=5 & 5 \times 3=15 \\ 15 * 5=3 & 3 \times 5=15 \end{array} \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \\ & 15+5=3 \\ & 15+3=5 \end{aligned}$
$\begin{aligned} & \underset{\sim}{N} \\ & \stackrel{N}{\approx} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \frac{6}{4} \\ & \frac{0}{2} \\ & \frac{2}{0} \\ & \text { ¢ } \\ & \hline \end{aligned}$		Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently. Students can then progress onto dividing using numberlines (with no remainders) $\begin{aligned} & \text { Eg } 15 \div 3=5 \\ & 0-5-10-15 \\ & \begin{array}{l} (1 \times 5) \quad(1 \times 5) \quad(1 \times 5) \\ =3 \operatorname{lots} \text { of } 5 \end{array} \\ & 15 \div 3=5 \quad \text { (as } 5 \times 3=15) \end{aligned}$	Begin with divisions that divide equally with no remainder.

Calculation Guidance: Division

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \stackrel{\rightharpoonup}{m} \\ & \stackrel{y}{\#} \\ & \underset{\sim}{*} \end{aligned}$		$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. ($)^{(1)}$ ($):$	Complete written divisions and show the remainder using r .
				Move onto divisions with a remainder. Once children understand remainders, according to the context. $\left.5\right\|^{1866^{4} 1 / 5}$

Calculation Guidance: Division

